238750

22 H alla el área de estos trapecios isósceles. a) c) b) d) 23 C alcula el área de: a) Un hexágono regular de lado 2 cm. b) Un octógono regular de perímetro 48 cm. 24 H alla la longitud 6 cm del segmento rojo de esta figura. 25 D etermina el área de las superficies coloreadas. 5 cm 4 cm 3 cm 3 cm b) a) d) c) G 5,54 cm 26 C alcula el área de las siguientes figuras. 4 cm a) 12 cm b) 27 D etermina el área de las figuras. c) 5 cm 2 cm d) 2,5 cm 2,5 cm a) 5 cm 7 cm b) 10 cm 4 cm 3 cm 6 cm 3 cm 10 cm 7 cm 3,5 cm 4,13 m 16 cm 24 cm 164 m 14 cm 4 m 3 cm 28 O bserva esta torre y su sombra. ¿Qué distancia hay desde el punto más alto de la torre hasta el extremo de la sombra? 29 U na escalera 10 m 6 m de 10 m de longitud está apoyada sobre una pared. El pie de la escalera dista 6 m de la pared. ¿Qué altura alcanza la escalera sobre la pared? 30 E n los lados de un campo cuadrangular se han plantado 32 árboles, separados 5 m entre sí. ¿Cuál es su área? ¿Cuánto mide el lado? 31 E sta señal de tráfico indica la obligatoriedad de parar. Halla su área si su altura es 90 cm y su lado mide 37 cm. 32 C ada uno de los 50 pisos de un edificio tiene la planta de esta figura, siendo el lado del hexágono de 30 m. Si el suelo tiene una moqueta que cuesta 20 €/m2, calcula el precio total pagado por la moqueta del edificio. 30 m 32 U n repostero ha cubierto de azúcar la parte superior de 200 rosquillas como la de la figura. Si ha utilizado 5 kg de azúcar, ¿cuántos gramos de azúcar se necesitan para cubrir cada centímetro cuadrado de rosquilla? 200 m 150 m 5 cm G F 6 cm G F 9

RkJQdWJsaXNoZXIy