253052

1 4.3.  L’acceleració i el sistema de referència Un observador sotmès a acceleració percep el moviment dels objectes de manera diferent a com ho fa un observador en repòs. L’obser vadora en repòs al banc, en la imatge (B), veu al ciclista (A) desenvolupar una acceleració W aobj i també veu l ’obser vador en moviment (C) l li scant amb una acceleració W asi s. Mentrestant, l’obser vador en moviment pot veure que el ciclista porta una acceleració W arel. Tot i així , el moviment del ciclista és un . La relació entre aquestes tres acceleracions és: W arel = W aobj - W asis Els sistemes de referència es classifiquen en inercials i no inercials. ● El sistema de referència inercial és aquell que W asis = W 0. Pot donar-se o no que entre els dos observadors hi hagi moviment; si hi ha moviment, ha de ser amb velocitat constant. En aquest cas, W arel = W aobj. ● El sistema de referència no inercial és aquell on W asis ! W 0. Sí que hi ha moviment entre tots dos observadors i és accelerat. La Terra és el nostre sistema de referència inercial habitual, però gira sobre si mateixa i aquest gir comporta una acceleració centrípeta. En estudiar el moviment d’objectes sobre la superfície terrestre pròxims entre ells, no la tenim en compte, ja que tots experimenten la mateixa acceleració. Però en estudiar el moviment d’objectes allunyats de la superfície, no es pot negligir. E X E M P L E S R E S O LT S 9 i 1 0 9. Un ascensor s’eleva amb acceleració 0,2 m/s2 dirigida cap a dalt. Un objecte cau des d’una determinada altura per la gravetat amb a = 9,8 m/s2. Un observador a l’ascensor, quina acceleració percep de l’objecte que cau? Definim els vectors que intervenen: a Wsis = +0,2 j W m/s 2; a W obj = -9,8 j W m/s 2. a Wrel = a Wobj - a Wsis = (-9,8 j W m/s 2) - (+0,2 j W m/s2) = -10 j W m/s2 L’observador que puja amb l’ascensor accelerat percep la caiguda de l’objecte amb més acceleració que un altre en repòs des de terra. 10. Des d’uns cavallets amb velocitat de 3,5 m/s i radi 7 m, un observador veu com cau un objecte, per l’acció de la gravetat, 9,8 m/s2, des d’una determinada altura. L’observador dels cavallets, quina acceleració percep de l’objecte que cau? Vectors que intervenen: a Wsis = v 2/R i W = (3,5 m/s)2/ 7 i W = 1,75 i W m/s2; a Wobj = -9,8 j W m/s 2. Aplicant la relació definida: a Wrel = (-9,8 j W m/s 2) - (+1,75 i W m/s2) = -1,75 i W m/s2 - 9,8 j W m/s2 El moviment del ciclista es descriu de diferent manera des del tobogan, moviment accelerat, que des d’un seient en repòs al costat de la calçada. Oposició Conjunció Conjunció i oposició de Mart. A B C 17 Observa la figura. El Sol, la Terra i Mart poden estar alineats. Si la Terra està entre Mart i el Sol, s’anomena oposició. Si el Sol està entre Mart i la Terra, s’anomena conjunció. Calcula el mòdul de l’acceleració relativa de Mart per a un observador a la Terra: a) En oposició. b) En conjunció. Dades: períodes de translació: TMart = 687 dies, TTerra = 365,25 dies; radis orbitals: rMart = 2,3 ? 108 km, r Terra = 1,5 ? 108 km. Solució: a) 3,36 ? 10-3 m/s2; b) 8,52 ? 10-3 m/s2 A C T I V I T A T S Sol Terra Mart Mart 39

RkJQdWJsaXNoZXIy