372918

NÚMEROS ENTEROS Y FRACCIONES TABLA DE EVALUACIÓN DE COMPETENCIAS Y SOLUCIONES 2 Criterios Actividades Saberes relacionados 1.1. Reconocer situaciones susceptibles de ser formuladas y resueltas mediante herramientas y estrategias matemáticas, planteando variantes, modificando alguno de sus datos o alguna condición del problema. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 –  Uso de los números enteros, fracciones, decimales y raíces para expresar cantidades en contextos de la vida cotidiana con la precisión requerida. –  Reconocimiento y aplicación de las operaciones con números enteros, fraccionarios o decimales útiles para resolver situaciones contextualizadas. –  Aplicación de estrategias de cálculo mental con números naturales, enteros, fracciones y decimales. –  Interpretación del significado de los efectos de las operaciones aritméticas con números enteros, fracciones y expresiones decimales. 2.1. Reconocer y usar las relaciones entre los conocimientos y experiencias matemáticas formando un todo coherente. 2, 3, 4, 5, 7, 8, 9, 10 6.3. Reconocer y describir en el entorno inmediato situaciones problemáticas reales de índole científica y emprender iniciativas que puedan contribuir a su solución, aplicando herramientas y estrategias apropiadas de las matemáticas y las ciencias, buscando un impacto en la sociedad. 2, 3, 4, 5, 7, 8, 9, 10 6.4. Resolver problemas matemáticos y fisicoquímicos movilizando los conocimientos necesarios, aplicando las teorías y leyes científicas, razonando los procedimientos, expresando adecuadamente los resultados y aceptando el error como parte del proceso. 2, 3, 4, 5, 7, 8, 9, 10 Soluciones 1 Ordena de menor a mayor los siguientes números enteros. -10 -15 7 0 -8 10 -16 -16 < -15 < -10 < -8 < 0 < 7 < 10 2 Resuelve. a) (-9) : 3 - [(-5) + 3] × 3 + 6 = -3 - (-2) × 3 + 6 = -3 - (-6) + 6 = 9 b) 3 × (-7) + (-2) × [4 + (-1)] = -21 + (-2) × 3 = -21 - 6 = -27 3 Hace unos días, Gema hizo una ruta por la montaña. Comenzó su ascenso desde el nivel del mar y subió 750 m, después descendió 110 m y volvió a subir 200 m más. ¿A qué altitud se encontraba en ese momento? ¿Cuánto más debería haber subido para alcanzar los 1 000 m sobre el nivel del mar? 0 + 750 - 110 + 200 = 840 En ese momento se encontraba a 840 m de altitud. 1 000 - 840 = 160 Debería haber subido 160 m. 4 Halla x para que las siguientes fracciones sean equivalentes. a) 12 7 60 7 60 12 420 12 35 = → = ⋅ = = x x b) x x 51 6 9 51 6 9 306 9 34 = → = ⋅ = = 10 DIVERSIFICACIÓN I. ÁMBITO CIENTÍFICO TECNOLÓGICO Material cortesía de . Prohibida su redistribución física y/o comunicación a través de internet o redes sociales.

RkJQdWJsaXNoZXIy